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Nanotechnology as a Sustainability Science
VS
The Sustainability of Nanotechnology

Nano as a Sustainability Sustainability of Nanotechnology

Science = Prospective knowledge and
predictive decisions

= Nano EHS and the development of
a 21st-century high throughput,
predictive and computational platform
for Nano EHS

= Adaptable risk assessment

= Life Cycle analysis

= Legal & Policy considerations

= Environmental cleanup

= Decreasing carbon footprint
= Societal acceptance

= Energy, food, water impact

= Green manufacturing

= Nanomedicine/POC delivery
= Education and Outreach
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“Toxicity Testing in the 21st Century: A Vision
and a Strategy”

Current: One material at a time descriptive animal testing

US National Academy of

Live animal testing
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Nanomaterial Predictive Toxicology
(proportional weighted discovery)

In Vivo Adverse Outcomes
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Tools: Cellular High Throughput Screening
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Tools: Mechanistic Toxicological Pathways in Cells
for Predictive Toxicological Modeling
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Predictive HTS-based Paradigm for Oxidative Stress

Multi-parameter HTS In vivo ranking
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Toxicity explained by Dissolution and Conduction Energy
(statistical testing of scientific hypothesis)

* Highly non-linear effects of dissolution and

conduction energy explain MoX toxicity in
agreement with biochemical theories.

Regression Tree
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Quantifiable Cooperative Cellular Interactions as Biomarkers for
CNT Disease Pathogenesis in the Lung
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Use of the Macrophage to develop a Predictive
Toxicological Paradigm for Lung Damage

CNTs Macrophage |L.-1B
L]

oy,
v ¥
27~ (

" lysosome
Inflammasome

o
-
™

Undamaged Damaged’
lysomes lysomes

°e® L1 |

Long Aspect Ratio
ENMs (SWCNTs,
MWCNTSs)

i Ros
R o ® K- efflux
( Lysosome )  ATP

\_/_""'___/

¥ .
Cathepsin B I.nflsanI;nPa; ome.

v
¢ - ASC
% » Caspase 1

Pro-IL-1B \ IL-18
Sy A

°® °® ®e®

Wang et al. ACS Nano. 2010
Wang et al ACS Nano. 2011



Predictive Toxicology Approaches allows Large Numbers of
Materials to be grouped in Hazard Band Categories
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Tiered Approach Using Predictive Toxicological
Modeling for Hazard Ranking and Risk Translation

«1st tier — In vitro
— Predictive assays to study specific mechanisms of injury
— Rank potency of test materials vs well-defined positive and

negative controls from libraries
— Develop quantitative SAR analysis for in silico predictions

«2"d tier — short term in vivo
— Test selected materials within a category/mechanism/SAR
— Focused/limited animal studies

— Validate mechanism and potency within a group
— In vivo hazard ranking (pathophysiology of disease outcome)

3" tier — short-term or 90 day inhalation studies
— Test the most potent materials within a tier 2 category/group

— Dose-response extrapolation using benchmark materials
to allow risk assessment

— Establish OEL’s

— Use for read-across regulatory decision making



A Multi-Stakeholder Perspective on the
Use of Alternative Test Strategies for
Nanomaterial Safety Assessment
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Provisional Consensus about ATS use for nano EHS

» ATS widely accepted to prioritize ENM hazard assessment but not yet ready
for quantitative risk assessment or regulation

» Hazard ranking and grouping of ENMs could assist regulatory and occupational
decision making

» ATS and predictive toxicological paradigms can be used to establish hazard
categories and material grouping as a 1sttier of testing, which is used to
prioritize more costly and elaborate animal studies

» Any framework that considers ATS for regulatory purposes needs to be
transparent, participatory and engage a broad stakeholder community

» A predictive toxicological approach for CNT is potentially helpful for hazard
ranking, prioritizing animal experiments, and grouping of materials

» The development of hazard ranking, material grouping and SARs can
become an integral part of new product development

» It is important to consider dose-response extrapolation and exposure
scenarios that link mechanistic and predictive toxicological assessment to
risk assessment



IN THE SENATE OF THE UNITED STATES: a bipartisan bill to
modernize title | of the Toxic Substances Control 14 Act (15
U.S.C. 2601 et seq.) —May 24 2013

‘IMPLEMENTATION OF ALTERNATIVE TESTING METHODS.—To promote the
development and timely incorporation of new testing methods that are not

”,

laboratory animal-based..... ;

“(A) ....develop a strategic plan to promote the development and
implementation of alternative test methods and testing strategies to generate
information used for any safety-standard determination made that reduce,
refine, or replace the use of laboratory animals, including toxicity pathway-
based risk assessment, in vitro studies, systems biology, computational
toxicology, bioinformatics, and high-throughput screening”

“(B) beginning on the date ...and every 5 years thereafter, submit to Congress
a report that describes the progress ...... ”

“(C) fund and carry out research, development, performance assessment, and
translational studies to accelerate the development of test methods and testing
strategies that reduce, refine, or replace the use of laboratory animals in any
safety-standard”




